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Let us assume a frequency stability of 

Kco= 10-3 . 

If our top frequency in 50 kHz, and the longest wave- 
length we detect is 10 A, we will have coz/n < 794, and 

e_~O.08. 

Such a chopper system would be adequately described 
by equations (9a) and (9b). 
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Absorption and Volume Corrections for a Cylindrical Sample, Larger than the X-ray Beam, 
Employed in Eulerian Geometry 

BY B. A. COYLE* AND L.W. SCHROEDER~" 

Department of  Chemistry and the Materials Research Center, Northwestern University, 
Evanston, lllinois 60201, U.S.A. 

(Received I June 1970) 

A treatment of the absorption and volume corrections for a cylindrical sample, which is larger than the 
X-ray beam and which is employed in 'Eulerian cradle' geometry, is described. The procedure described 
here is strictly correct only for a one-dimensional X-ray beam, but it has given satisfactory results for a 
beam of finite cross section. The calculation is easily done by computer and requires only the radius of 
the sample, the 20 and Z values for each reflection, and the zeros of Legendre polynomials and their 
weights if Gaussian integration is used. 

Introduction 

Although procedures for absorption corrections have 
been extended to crystals of arbitrary shape and to 
diffraction geometries currently in use, most of these 
treatments assume that the crystal is completely ir- 
radiated by the primary X-ray beam (see, for example, 
Wuensch & Prewitt, 1965). However, Skertchly (1957) 
has pointed out that in the investigation of metallic 
and fibrous substances it is often convenient to use a 
cylindrical specimen having a diameter larger than 
that of the X-ray beam. He treated the case of a 
cylindrical specimen irradiated with a fine beam at 
perpendicular incidence. 

* Present address: Department of Chemistry, North Central 
College, Naperville, Illinois, U.S.A. 
t Present address: Center for Radiation Research, National 

Bureau of Standards, Washington, D.C., U.S.A. 

A situation arose in our laboratory involving a large 
cylindrical crystal and 'Eulerian cradle' geometry 
(Coyle, Schroeder & Ibers, 1970) where the incident 
beam and the crystal are not necessar~y perpendicular. 
An absorption and volume correction for such a geo- 
metry is developed in this paper. The treatment devel- 
oped is subject to two limitations. A minor restriction 
is that the axis of the cylindrical crystal be coincident 
with the ~0 (polar) axis of the 'Eulerian cradle' (Furnas, 
1957). This should be easily achieved in most experi- 
mental situations. The second limitation is that our 
treatment is exact only for a one-dimensional beam. 
Thus, it is desirable that the ratio of the beam diameter 
to the diameter of the cylinder be as small as is experi- 
mentally feasible. 

When a crystal is not totally bathed in an X-ray 
beam the volume of that crystal seen by the beam is 
not necessarily constant for various reflections, and 
the amount of variation depends on the geometry of 
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the crystallographic method used. Both the intensity 
of the reflected radiation, and also its absorption by 
the sample, are functions of the 'irradiated volume'; 
the former is a monotonic increasing function since 
more reflecting planes are encountered, while the trans- 
mission due to absorption is monotonic decreasing 
since the radiation will on the average pass through 
more crystalline material. Equations (1) may serve to 
illustrate how the effects combine. 

I I I o 

1~ I ° I ° 

Ivexp[- / t ( t°+t)]dv '  fvdv' 

Sy Iv0 
Iv exp[-/z(t0+ t)ldv' 

= ( 1 )  

fro de' 

where 

Io ° is the intensity corrected for both volume and 
absorption; 

10 is the intensity corrected for absorption only; 
I is the intensity observed (uncorrected); 
/z is the linear absorption coefficient; 
to is the length of the incoming beam within the 

crystal; 
t is the length of the diffracted beam within the 

crystal; 
v' is an umbral integration variable; 
v is the volume seen by the beam; 
v0 is the standard volume to which correction 

is made. 

I/10 is therefore the correction due to the absorption 
and 1°/10 that due to the varying volume. The ab- 
sorption correction, of course, should be carried out 
over the volume v and not over Vo, and the volume cor- 
rection represents a change in the normalization quo- 
tient from v to Vo. Thus the volume correction should 
be applied to 10 and not t o / ,  and the absorption cor- 
rection to I and not to 10* so that the corrections are 
not simply commutative. 

General description of the problem 

Fig. 1 shows the 'Eulerian cradle' geometry that we 
are considering. The axis of the cylindrical crystal is 
coincident with the ~0 axis and makes an inclination 
(Furnas, 1957) angle X with its projection on the plane 
of the incident and diffracted beams (represented by 
the vectors So and S). Both of these beams make the 
Bragg angle 0 with their projections on the plane of the 

X circle so that the diffraction vector S-So is always in 
the plane of the X circle as is the axis of the cylinder.] 
The intersection of the plane So, S with the cylinder 
results in an elliptical cross section as shown in Fig. 2. 
The minor axis of the ellipse is simply the diameter of 
the cylinder because the axis of the X circle is coincident 
with this diameter (since the cylinder axis and the ~0 
axis are coincident). The length of the major axis is 
equal to 2R/cos Z (R is radius of the crystal). Fig. 2 
shows the direction of the incident beam which always 
makes the Bragg angle with the minor axis of the el- 
lipse. 

Volume correction 

Fig. 1 shows that the volume of crystal available for 
diffraction (shown by dotted lines) varies with the 
angle between the crystal axis (~0 axis) and the direction 
of the incident beam. The angle between the cylinder 
axis and the incident beam is denoted by c¢ in Fig. 1. 
It is convenient to follow Parkes & Hughes (1963) and 
write the volume of crystal seen by the X-ray beam as 
v= Vo/sin c~, where Vo is the minimum volume corre- 
sponding to perpendicular incidence. This is the stan- 
dard volume to which the correction will be made. 

t In the case of a four-circle diffractometer, this treatment 
is applicable to reflections measured in the 0-20 (bisecting) 
mode. 

e 1\~2.<~-"iI '-. . . /I e 
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* Otherwise I/Io, the volume correction, is equal to 

I exp [-'t(t°+t)]dv'/I exp [-I~(t°+t)]dv" vo 

Fig. 1. The experimental arrangement for 'Eulerian cradle' 
geometry. The axis of the cylindrical crystal is coincident 
with the ~0 axis. The vectors So and S represent the incident 
and diffracted beams. 



cos ~ = sin 0 sin Z by spherical trigonometry accord- 
hag to our convention for the sense of angle %. Then 
sin c~ = (1 - cos 2 ct)l/2 = (1 - sin 2 0 sin 2 X)I/2 and the vol- 
ume correction ratio l°/1 o is thus simply equal to 
(1 - sin 2 0 sin 2 j()--1/2. 

A b s o r p t i o n  c o r r e c t i o n  

In Fig. 2, NON' is the incoming beam. Diffraction 
occurs from a volume element dv (denoted by P)  and 
the diffracted beam meets the crystal surface at Q. By 
taking dr= 7rr 2 dz (where z is in the direction of the 
incident beam whose radius is r) we replace the usual 
form for the correction 

I _ 1 ( 
exp [-It(to+ t)]dv' 

I 0 V ~v 
(2) 

by a single integration over line elements dz: 

, 1SI  
I ° - 20 exp [-/1(to(z)+ t(z)]dz, (3) 

0./sin 20=(Q- z)/sin ( y - O ) .  

where to(Z)= NP and t(z)= PQ as denoted in Fig. 2. 
Then the path length to is just the value of integra- 

tion variable z and all that remains is to calculate the 
path t as a function of z. The incoming elliptic radius 
Q can be calculated from the equation of the ellipse. 
Choosing x along the minor axis and y along the major, 
the equation of the ellipse becomes xE+y 2 c o s 2 z = R  2 
and since the point (0 cos O, O sin 0) lies on this curve, 
then 

0 =  R(1 - s i n  2 0 sin 2 %)-1/E (4) 

The outgoing elliptical radius 0. can be calculated in a 
similar manner, as follows. 

Let ~, be the angle between OQ and the minor 
axis, and since OP =Q-z ,  then 

0.=R/(1 - sin E N sin E Z)I/E 

and from the triangle OPQ, 

N ° O 

~g may be eliminated from these two equations to give 
a quadratic in 0-2: 

A 0 .4 ~1- B 0 .2 7 t- C = 0 ,  (5)  

where 

A = (1 - s i n  2 0 s i n  2 X) 2, 

B = - 2R2(1 - sin 2 0 sin 2 X) 

- 2(cos 2 0 - sin 2 0 cos 2 g)" sin 2 20 sin 2 Z (0 - z) 2, 

C = R 4 + s i n  4 20 sin4% (Q-z)  4 

+ 2 R  2 sin 2 20 sinE% ( ~ - z )  2 cos 20.  

One can show that the discriminant BE-4AC>O 
provided the following equation holds for the ranges 
of z, 0 and Z relevant to the physical problem 

[ ~ - ~ l  1--sin2 0 sin2 Z 

-< sin 20 cosz  
(6) 

The right-hand side of equation (6) has a minimum 
value of 1 when cos Z = +- cot 0, which can only occur 
when 0 > re/4, i.e. for back scattering. Since the range 
of z is 0_< z < 20, the left-hand side of equation (6) is 
always < 1 and thus equation (6) always holds. It is 
easy to show that the roots of equation (5), in addition 
to being real, are always positive. Since A and C are 
always positive and B is always negative, a root could 

only be negative if IBI < VBE-4AC or B 2 < BE-4AC. 

However, BE>BE-4AC because AC is always non- 
negative. Thus the roots of equation (5) are real and 
positive as they must be since they represent values of 
0- 2. The larger root corresponds to values of z < O and 
the smaller to z > 0. 

Several special cases are of at least academic in- 
terest: 

(a) When z = Q, reflection occurs from the origin; the 
discriminant vanishes, the roots of the quadratic in 

R 
0 -2 are equal and 0. = 0 = (1 - sin 2 0 sin 2 Z'l/2") 
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Fig. 2. The elliptical cross section in the S0,S plane of a 
cylindrical crystal illustrating diffraction from point P. 

(b) When Z =  0, the ellipse becomes a circle, A = 1, 
B = - E R  2, C=R4;  the discriminant vanishes, the 
roots of the quadratic in 0- 2 are equal and 0.=R. 

(c) When Z =  + re/2, the ellipse becomes a pair of 
parallel lines; then the path length t =  2 ~ - z ,  and the 
path length between the parallel lines is z + t  =20, 
which is independent of z. 

t is subsequently obtained from the triangle formula 

t 2 -2 t (O-z )  cos 20+(0-z)2-0 .2=0.  (7) 

One root of this equation is always negative, so the 
positive root is chosen as the physically plausible so- 
lution. The equation above may be compared to that 
of Skertchly, who treated the special case of a circular 
cross section. The transmission factor for absorption 
is therefore 
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- -  = dz (8) i0 exp { - / t [ z +  t(z)]}dz/ o 

and that for the combined absorption and volume is 

Discussion 

Our treatment is an extension of that presented by 
Skertchly (1957) and as such is exact only for a one- 
dimensional beam. When diffraction occurs from a 
volume element zrr2dz (r is the radius of the beam) 
instead of the line element dz, as in the treatment of 
the one-dimensional beam, the sum (to + t) is no longer 
constant for all points within this volume element. 
Thus, a one-dimensional integration does not give the 
true value for the transmission factor. 

Skertchly stated that his equation gave the path 
length associated with each volume element fairly 
accurately when the ratio of the radius of the cylin- 
drical sample (R) to the radius of the beam (r) is > 5. 
Under these conditions the sum (to + t) for some points 
within a given volume element may vary by 10% 
(those eases where the diffracted beam occurs at 20 
angles >75 °) from that obtained from Skertchly's 
treatment. However, the mean value of (to+t) for 
points within the volume element (the average over the 
cross section of the beam) is within 2 % of that ob- 
tained from Skertchly's equation. Since [Ae-Utl/e -ut 
=pAt,  we see that the variation in the transmission 
factor for a given volume element becomes more 
serious when/z is larger. Similar conclusions are drawn 
from our treatment. 

Since our absorption correction is approximate it is 
appropriate to mention the experimental conditions 
under which it is most accurate. Our treatment is most 
applicable to experiments involving a finely collimated 
X-ray beam of small radius that is irradiating a large 
cylindrical sample. These conditions make the R/r 
ratio large thus reducing the error in the path length 
for a given volume element. The fine collimation is 
desirable because our correction assumes that the in- 
tensity is constant throughout the portion of the sample 
that is being irradiated. Since the sample is larger than 
the diameter of the collimator (or the umbra region of 
irradiation by the X-ray beam) it is desirable to make 
the penumbra region of irradiation as small as pos- 
sible because the incident intensity is lower than in 
the umbra. 

We have applied our absorption correction to some 
data collected on a cylindrical crystal of K(H4F5) that 
was surrounded by a concentric Kel-F (polychloro- 
trifluoroethylene) tube (see Appendix for details). The 
values of the linear absorption coefficient,/t, for the 

• crystal and tube are 10.17 and 9.87 cm -1, respectively. 
The outer radius of this assembly was 0.17 cm so/ tR 
was about 1-7. This case is less favorable because the 
radius of the sample was only 2.2 times that of the 

X-ray beam compared with the factor of five that 
Skertchly suggested. The variation in (to+ t) from the 
mean value of (to+ t) for a given volume element may 
approach 15 % for some angles of diffraction. Also, 
in order not to lose diffracted intensity, we did not use 
the finest collimation available to us. Our collimator 
angle was about 40 minutes. 

The crystallographic agreement factors 

R , =  ~[]Fobsl-lFcalell/~,lFobsl 
and 

Rz = [ ~ w (Fobs-- Fcale)2/~w (Fobs)Z]'/2 

were 0.088 and 0.134 for the refinement of the K(H4Fs) 
structure before the absorption correction. Our ab- 
sorption correction yielded transmission factors in the 
range 0.028 to 0.036.* Identical refinement of the 
corrected data yielded values for R1 and R2 of 0.068 
and 0.082, respectively, which is a considerable im- 
provement. Our experience, although limited to this 
particular case, indicates that the absorption correc- 
tion presented here is capable of yielding useful results. 

The correction is simple to apply in practice. It 
requires only the 20 and Z values for each observation 
in addition to the sample radius and the absorption 
coefficient. If Gaussian integration is used then the 
zeros of the Legendre Polynomials and their weights 
are also required. 

APPENDIX 

Treatment of  the case where a cylindrical crystal 
is enclosed in a concentric tube; use of  the 

Gaussian quadrature 

An extension of our previous theory was used to treat 
data obtained from a crystal of K(H4Fs) of radius R1 
which was enclosed in a concentric Kel-F tube of 

* These numbers are not transmission factors in the usual 
sense since they include our correction due to the varying 
volume. 

Fig. 3. Elliptical section in the So, S plane, showing diffraction 
from P in the large cylindrical crystal enclosed in a cylindri- 
cal tube. The incident beam is along NON' and the diffracted 
beam along PQ. 
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radius Rz. This extension allows for the fact that the 
linear absorption coefficient of the tube is likely to be 
different from that of the crystal and that while both 
media absorb the radiation, only the enclosed medium 
diffracts. Fig. 3 shows the cross section of the crystal 
and tube in the S, So plane. The ellipses are concentric, 
and have the same eccentricity, sin 2:. 

In the following equations subscript 1 refers to the 
crystal and subscript 2 refers to the tube. ax, aE, at 
and aE can all be calculated from equations (4) and 
(5) as given in the main text using both Ra and RE. 

For any given value of z, where aE-- a~ < Z <_ aE 27 aX, 
h and tE can be computed from equation (7), using the 
corresponding al and a2 values. The absorption cor- 
rection becomes 

, S Z  10 exp {- / t l (z  + h - aE + 01) 

-It2(a2-O127 t2-tl)}dT,] l°2+°l dz (A1) 
v02--Ol 

and the correction for absorption and volume becomes 

I _ i oz+0, 

-~00 - o02-ot  

exp {- / t l (z  + h -  02 + a l )  - -  ~/2(a2 - -  01 27 t2-- h)}dz 

I 
R2+RI d ~  

R2--RI 
(A2) 

The integral (A2) may be computed using any of the 
standard numerical methods. The most efficient of 
these (though not always the easiest to apply), viz. 
Gaussian quadrature, is briefly outlined as follows. 
The theory of Gaussian quadrature itself is given in 
several texts (Conte, 1965; Hartree, 1958). 

The integral may be replaced by a weighted sum of 
the values of the function at the N zeros of the Legendre 
polynomial of degree N in the interval [ -  1, + 1]. These 
zeros x, and their corresqonding weights w, are read- 
ily available (Abramowitz & Stegun, 1964). The linear 
transformation 

z~=(rl x~ +r2) ( 1 - s i n  2 0 sin2 Z)-1/2: i= 1 . . .N  
= at x~ + 02 (A3)  

converts the Gaussian variable x into the beam co- 
ordinate z for each i of the N summation points. 

Then the transmission expression for the combined 
absorption and volume correction becomes 

1 m f 02+01 

00 m v02--01 

exp { -/ta(z + tl - a2 + al) - #2(a2- at + t2 -  h)}dz (A4) 
2R1 

I+i 
2R1 - 

x exp {-fll(Olx+Ql+tl)-fl2(O2-Ol+t2-tl)}dx 
N 

=½(1-  sin20sin 2 ~()-1/2 ~ w, exp{--/za 
t=l  

X (Q1X{ 27 Oa 27 t l )  - -  ~ 2 ( 0 2 - a l  27 t2 - -  t l )}  (A5) 
where h and t2 are calculated as functions of the 
Gaussian variable x~ by using the linear transformation 
given by equation (A3). These equations are identical 
with equation (A2) above. This treatment can be used 
to solve the simpler case of the exposed crystal where 
/t2=0, R2=R1, Q2=Q1, and equations (A1) and (A2) 
reduce to equations (8) and (9). We used twenty Gaus- 
sian points to evaluate equation (A5) and processed 
245 reflections in 60 seconds of CDC 6400 computer 
time. 
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